4.8 Article

Scaling up Microbial Fuel Cells

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 42, 期 20, 页码 7643-7648

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es800775d

关键词

-

资金

  1. U.S. Office of Naval Research (ONR) [N00014-06-1-0217]

向作者/读者索取更多资源

The goal of this study was to quantify the relation between the surface area of the current-limiting electrode of a microbial fuel cell (MFC) and the power density generated by the MFC. Shewanella oneidensis (MR-1) was grown anaerobically in the anodic compartment of an MFC utilizing lactate as the electron donor. Graphite plate electrodes of various sizes were used as anodes. Commercially available air electrodes, composed of manganese-based catalyzed carbon bonded to a current-collecting screen made of platinum mesh, were used as cathodes, and dissolved oxygen was used as the cathodic reactant The surface area of the cathode was always significantly larger than that of the anode, to ensure that the anode was the current-limiting electrode. The power density generated by the MFC decreased as the surface area of the anode increased, which fits well with the trend we detected comparing various published results. Thus, our findings bring into question the assertion that the overall power density generated by an MFC with large electrodes can be estimated by extrapolating from an electrode with a small surface area. Our results indicate that the maximum power density generated by an MFC is not directly proportional to the surface area of the anode, but is instead proportional to the logarithm of the surface area of the anode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据