4.8 Article

Degradation of hexahydro-1,3,5-trinitro-1,15-triazine (RDX) using zerovalent iron nanoparticles

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 42, 期 12, 页码 4364-4370

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es7028153

关键词

-

向作者/读者索取更多资源

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant of soil and water at military facilities. The present study describes degradation of RDX with zerovalent iron nanoparticles (ZVINs) in water in the presence or absence of a stabilizer additive such as carboxymethyl cellulose (CMC) or poly(acrylic acid) (PAA). The rates of RDX degradation in solution followed this order CMC-ZVINs > PAA-ZVINs > ZVINs with k(1) values of 0.816 +/- 0.067, 0.082 +/- 0.002, and 0.019 +/- 0.002 min(-1), respectively. The disappearance of RDX was accompanied by the formation of formaldehyde, nitrogen, nitrite ammonium, nitrous oxide, and hydrazine by the intermediary formation of methylenedinitramine (MEDINA), MNX (hexahydro-1-nitroso-,3,5-dinitro-1,3,5-triazine), DNX(hexahydro-3-dinitroso-5-nitro-1,3,5-triazine), TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). When either of the reduced RDX products (MNX or TNX) was treated with ZVINs we observed nitrite (from MNX only), NO (from TNX only), N2O, NH4+, NH2NH2 and HCHO. In the case of TNX we observed a new key product that we tentatively identified as 1,3-dinitroso-5-hydro-1,3,5-triazacyclohexane. However, we were unable to detect the equivalent denitrohydrogenated product of RDX and MNX degradation. Finally, during MNX degradation we detected a new intermediate identified as N-nitroso-methylenenitramine (ONNHCH2NHNO2), the equivalent of methylenedinitramine formed upon denitration of RDX. Experimental evidence gathered thus far suggested that ZVINs degraded RDX and MNX via initial denitration and sequential reduction to the corresponding nitroso derivatives prior to completed decomposition but degraded TNX exclusively via initial cleavage of the N-NO bond(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据