4.8 Article

Evaluation of Functional Groups Responsible for Chloroform Formation during Water Chlorination Using Compound Specific Isotope Analysis

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 42, 期 21, 页码 7778-7785

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es800399a

关键词

-

资金

  1. WAA

向作者/读者索取更多资源

Compound-specific isotope analysis was used to monitor the delta C-13 signature of chloroform produced upon the chlorination of model compounds representing natural organic matter functional groups (resorcinol, acetylacetone, acetophenone, phenol, and 2,4,6-trichlorophenol) and a natural water sample. For each model compound, a different apparent kinetic isotope effect was found for chloroform formation. Normal isotope effects were found for resorcinol, acetylacetone, and acetophenone, and ranged from 1.009 +/- 0.002 to 1.024 +/- 0.004, For the two phenols, an inverse effect was found (0.980 +/- 0.004). Lake Zurich water also had a inverse effect (0.997 +/- <0.001) indicating that phenols are likely chloroform precursors in NOM, but that other functional groups may also participate. The apparent C-13 kinetic isotope effect for the addition/ elimination reaction of 1,1,1-trichloropropanone mediated by OH- to yield chloroform is 1.014 +/- 0.002. A comparison of this value to those found for the chlorination of the model precursors and an evaluation of the differences in chloroform production kinetics for the different model precursors argue against a mechanism in which all NOM precursors react via a common intermediate. Compound specific isotope analysis may give additional insights into chloroform formation mechanisms beyond those allowed by current techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据