4.8 Article

Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 42, 期 5, 页码 1680-1686

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es071760d

关键词

-

向作者/读者索取更多资源

Degradation efficiencies of zerovalent iron (Fe-0) containing different bacterial inocula, i.e., an iron(III)-reducing Geobacter sulfurreducens strain and/or a bacterial consortium, were compared to degradation efficiencies of noninoculated Fe-0 in a laboratory-scale column experiment. Contaminant removal efficiencies and hydrogen production rates indicated an increasing reactivity in time for all inoculated iron columns, while reactivity of the noninoculated columns remained the same. The main mineral precipitates, including carbonate green rust, ferrous hydroxy carbonate, aragonite, and to a lesser extent goethite, were observed under all imposed conditions. The higher reactivity of the inoculated column material is explicable by the reduction of ferric iron species by iron(III)-reducing bacteria, resulting in the observed higher amounts of highly reactive carbonate green rust. However, contributions of other bacteria could not be excluded. Although different groups of hydrogen-consuming bacteria were detected in the columns, no indication was found that hydrogen consumption was sufficiently high to affect reactivity or permeability of the iron matrix, as the abiotic generation of H-2 was substantially exceeding its potential consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据