4.7 Article

The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

期刊

ENVIRONMENTAL RESEARCH LETTERS
卷 7, 期 4, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-9326/7/4/044039

关键词

tundra; fire; radiative forcing; albedo; EVI; climate change

资金

  1. NSF [1065587]
  2. Directorate For Geosciences
  3. Division Of Polar Programs [1023669] Funding Source: National Science Foundation
  4. Emerging Frontiers
  5. Direct For Biological Sciences [1065587] Funding Source: National Science Foundation
  6. Office of Polar Programs (OPP)
  7. Directorate For Geosciences [1023477, 1107707, 0856853, 806271] Funding Source: National Science Foundation

向作者/读者索取更多资源

Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据