4.7 Article

Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression

期刊

ENVIRONMENTAL RESEARCH
卷 121, 期 -, 页码 1-10

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2012.11.003

关键词

PM2.5; MODIS; Remote sensing; Aerosol optical depth; Geographically weighted regression

资金

  1. NASA Applied Sciences Public Health Program [NNX09AT52G]
  2. NASA [NNX09AT52G, 106411] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Most of currently reported models for predicting PM2.5 concentrations from satellite retrievals of aerosol optical depth are global methods without considering local variations, which might introduce significant biases into prediction results. In this paper, a geographically weighted regression model was developed to examine the relationship among PM2.5, aerosol optical depth, meteorological parameters, and land use information. Additionally, two meteorological datasets, North American Regional Reanalysis and North American Land Data Assimilation System, were fitted into the model separately to compare their performances. The study area is centered at the Atlanta Metro area, and data were collected from various sources for the year 2003. The results showed that the mean local R-2 of the models using North American Regional Reanalysis was 0.60 and those using North American Land Data Assimilation System reached 0.61. The root mean squared prediction error showed that the prediction accuracy was 82.7% and 83.0% for North American Regional Reanalysis and North American Land Data Assimilation System in model fitting, respectively, and 69.7% and 72.1% in cross validation. The results indicated that geographically weighted regression combined with aerosol optical depth, meteorological parameters, and land use information as the predictor variables could generate a better fit and achieve high accuracy in PM2.5 exposure estimation, and North American Land Data Assimilation System could be used as an alternative of North American Regional Reanalysis to provide some of the meteorological fields. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据