4.7 Article

Transgenerational thyroid endocrine disruption induced by bisphenol S affects the early development of zebrafish offspring

期刊

ENVIRONMENTAL POLLUTION
卷 243, 期 -, 页码 800-808

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2018.09.042

关键词

Bisphenol S; Zebrafish; Thyroid endocrine disruption; Transgenerational toxicity

资金

  1. Fundamental Research Funds for the Central Universities [201713040]
  2. National Natural Science Foundation of China [21707129]

向作者/读者索取更多资源

Maternal thyroid hormones (THs) play an essential role in the embryonic and larval development of fish. Previous studies in fish have reported that parental exposure to thyroid disrupting chemicals (TDCs) changed maternal TH levels in the offspring; however, whether this transgenerational thyroid endocrine disruption can further disturb the early development of the offspring still remains largely unknown. Bisphenol S (BPS), a substitute of bisphenol A, has been reported to be a potential TDC. In this study, zebrafish (F0) were exposed to environmentally relevant concentrations (1, 10, and 100 mu g/L) of BPS from 2 h post-fertilization to 120 days post-fertilization and then paired to spawn. Plasma levels of thyroxine (T4) were significantly decreased in F0 females while 3,5,3'-triiodothyronine (T3) plasma levels were significantly increased in F0 females and males; moreover, TH content in eggs (F1) spawned by exposed FO generation exhibited similar changes as the F0 females, with significant decreases in T4 and increases in T3, demonstrating BPS-induced maternal transfer of thyroid endocrine disruption. Further, excessive levels of maternal T3 in the offspring resulted in delayed embryonic development and hatching, swim bladder inflation defect, reduction in motility, developmental neurotoxicity, and lateral stripe hypo pigmentation in non-exposed F1 embryos and larvae. These results highlight the adverse effects on the early development of offspring induced by transgenerational thyroid endocrine disruption, which have been ignored by previous studies. Therefore, these results can further improve our understanding of the ecological risks of TDCs. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据