4.8 Article

Resonance Raman and Excitation Energy Dependent Charge Transfer Mechanism in Halide-Substituted Hybrid Perovskite Solar Cells

期刊

ACS NANO
卷 9, 期 2, 页码 2088-2101

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn507345e

关键词

mixed halide perovskites; solution processing; solar cells; Raman spectroscopy; charge separation mechanism; density functional theory

资金

  1. Swedish Energy Agency
  2. STandUP for Energy Program
  3. Swedish Research Council (VR)
  4. Goran Gustafsson Foundation
  5. Knut and Alice Wallenberg Foundation
  6. Angpanneforenings Research Foundation

向作者/读者索取更多资源

Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl(3) phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据