4.5 Article

Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils

期刊

ENVIRONMENTAL MONITORING AND ASSESSMENT
卷 185, 期 11, 页码 8831-8846

出版社

SPRINGER
DOI: 10.1007/s10661-013-3216-1

关键词

Distribution coefficient; Competitive adsorption; Saturation index; Calcareous soils; Heavy metals

向作者/读者索取更多资源

The objectives of this study were to investigate competitive sorption behaviour of heavy metals (Cd, Cu, Mn, Ni, Pb and Zn) under different management practices and identify soil characteristics that can be correlated with the retention and mobility of heavy metals using 65 calcareous soil samples. The lowest sorption was found for Mn and Ni in competition with the other metals, indicating the high mobility of these two cations. The Freundlich equation adequately described heavy metals adsorption. On the basis of Freundlich distribution coefficient, the selectivity sequence of the metal adsorption was Cu > Pb > Cd > Zn > Ni > Mn. The mean value of the joint distribution coefficient (K (dI sp)) pound was 182.1, 364.1, 414.7, 250.1, 277.7, 459.9 and 344.8 l kg(-1) for garden, garlic, pasture, potato, vegetables, wheat and polluted soils, respectively. The lowest observed K (dI sp) pound in garden soil samples was due to the lower cation exchange capacity and lower carbonate content. The results of the geochemical modelling under low and high metal addition indicated that Cd, Ni, Mn and Zn were mainly retained via adsorption, while Pb and Cu were retained via adsorption and precipitation. Stepwise forward regression analysis showed that clay, organic matter and CaCO3 were the most important soil properties influencing competitive adsorption of Cd, Mn, Ni and Zn. The results in this study point to a relatively easy way to estimate distribution coefficient values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据