4.5 Article

Process parameters for decolorization and biodegradation of orange II (Acid Orange 7) in dye-simulated minimal salt medium and subsequent textile effluent treatment by Bacillus cereus (MTCC 9777) RMLAU1

期刊

ENVIRONMENTAL MONITORING AND ASSESSMENT
卷 185, 期 11, 页码 8909-8923

出版社

SPRINGER
DOI: 10.1007/s10661-013-3223-2

关键词

Biodegradation; Decolorization; FT-IR; GC-MS; Orange II; Textile effluent

向作者/读者索取更多资源

In this study, Bacillus cereus isolate from tannery effluent was employed for orange II dye decolorization in simulated minimal salt broth and textile effluent. Most of the physicochemical parameters of textile effluent were above the permissible limits. The strain was highly tolerant to dye up to 500 mg l(-1). Increasing dye concentration exerted inhibitory effect on the bacterial growth and decolorization. The maximum decolorization of initial 100 mg dye l(-1) was achieved at optimum pH 8.0 and 33 A degrees C under static culture conditions during 96-h incubation. Supplementation with optimized glucose (0.4 %, w/v) and ammonium sulfate (0.1 %, w/v) with 3.0 % B. cereus inoculum further enhanced dye decolorization to highest 68.5 % within 96-h incubation. A direct correlation was evident between bacterial growth and dye decolorization. Under above optimized conditions, 24.3 % decolorization of unsterilized real textile effluent by native microflora was achieved. The effluent decolorization enhanced substantially to 37.1 % with B. cereus augmentation and to 40.5 % when supplemented with glucose and ammonium sulfate without augmentation. The maximum decolorization of 52.5 % occurred when textile effluent was supplemented with optimized exogenous carbon and nitrogen sources along with B. cereus augmentation. Gas chromatography-mass spectrometry identified sulfanilic acid as orange II degradation product. Fourier transform infra red spectroscopy of metabolic products indicated the presence of amino and hydroxyl functional groups. This strain may be suitably employed for in situ decolorization of textile industrial effluent under broad environmental conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据