4.5 Article

Carbon sequestration in reclaimed manganese mine land at Gumgaon, India

期刊

ENVIRONMENTAL MONITORING AND ASSESSMENT
卷 160, 期 1-4, 页码 457-464

出版社

SPRINGER
DOI: 10.1007/s10661-008-0710-y

关键词

Greenhouse gas; Global warming; Mine land; Integrated biotechnological approach (IBA); Soil organic carbon

资金

  1. Department of Biotechnology, India
  2. Manganese Ore India Limited (MOIL)

向作者/读者索取更多资源

Carbon emission is supposed to be the strongest factor for global warming. Removing atmospheric carbon and storing it in the terrestrial biosphere is one of the cost-effective options, to compensate greenhouse gas emission. Millions of acres of abandoned mine land throughout the world, if restored and converted into vegetative land, would solve two major problems of global warming and generation of degraded wasteland. In this study, a manganese spoil dump at Gumgaon, Nagpur in India was reclaimed, using an integrated biotechnological approach (IBA). The physicochemical and microbiological status of the mine land improved after reclamation. Soil organic carbon (SOC) pool increased from 0.104% to 0.69% after 20 years of reclamation in 0-15 cm spoil depth. Soil organic carbon level of reclaimed site was also compared with a native forestland and agricultural land. Forest soil showed highest SOC level of 1.11% followed by reclaimed land and agriculture land of 0.70% and 0.40%, respectively. Soil profile studies of all three sites showed that SOC pool decreased from 0-15, 15-30, and 30-45 cm depths. Although reclaimed land showed less carbon than forestland, it showed better SOC accumulation rate. Reclamation of mine lands by using IBA is an effective method for mitigating CO2 emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据