4.7 Article

The NASA-Goddard Multi-scale Modeling Framework-Land Information System: Global land/atmosphere interaction with resolved convection

期刊

ENVIRONMENTAL MODELLING & SOFTWARE
卷 39, 期 -, 页码 103-115

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envsoft.2012.02.023

关键词

Land-atmosphere interaction; Earth system modeling; Global modeling; Atmospheric prediction; Hydrologic prediction

向作者/读者索取更多资源

The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and land-atmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMF-LIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Vet. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE <-> fvGCM <-> Coupler <-> LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting land-atmosphere interactions at cloud-scale. Global simulations of 2007-2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of large-scale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据