4.6 Article

Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 17, 期 6, 页码 1857-1869

出版社

WILEY
DOI: 10.1111/1462-2920.12412

关键词

-

资金

  1. NERC [NE/D013291/1]
  2. FP6 European Commission [KH/Asia-Link/04 142966]
  3. European Commission
  4. [AP6/1801]
  5. Natural Environment Research Council [NE/D013291/1] Funding Source: researchfish
  6. NERC [NE/D013291/1] Funding Source: UKRI

向作者/读者索取更多资源

Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate-respiring bacteria, were determined by DNA stable-isotope probing. After incubation with C-13-acetate and C-13-lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.-related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate-respiring Sulfurospirillum spp. C-13-acetate selected for ArrA related to Geobacter spp. whereas C-13-lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA-phylotype related to the sulphate-reducing Desulfovibrio oxamicusDSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X-ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据