4.6 Article

Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 16, 期 4, 页码 1040-1052

出版社

WILEY
DOI: 10.1111/1462-2920.12291

关键词

-

资金

  1. Boeringer Ingelheim Foundation
  2. Max Planck Society
  3. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

向作者/读者索取更多资源

Neisseria gonorrhoeae is an obligate human pathogen that colonizes the genital tract and causes gonorrhoea. Neisseria gonorrhoeae can form biofilms during natural cervical infections, on glass and in continuous flow-chamber systems. These biofilms contain large amounts of extracellular DNA, which plays an important role in biofilm formation. Many clinical isolates contain a gonococcal genetic island that encodes a type IV secretion system (T4SS). The T4SS of N. gonorrhoeae strain MS11 secretes ssDNA directly into the medium. Biofilm formation, studied in continuous flow-chamber systems by confocal laser scanning microscopy (CLSM), was strongly reduced, especially in the initial phases of biofilm formation, in the presence of Exonuclease I, which specifically degrades ssDNA or in a Delta traB strain that does not secrete ssDNA. To specifically detect ssDNA in biofilms using CLSM, a novel method was developed in which thermostable fluorescently labelled ssDNA- and ss/dsDNA-binding proteins were used to visualize ssDNA and total DNA in biofilms and planktonic cultures. Remarkably, mainly dsDNA was detected in biofilms of the ssDNA secreting strain. We conclude that the secreted ssDNA facilitates initial biofilm formation, but that the secreted ssDNA is not retained in mature biofilms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据