4.6 Article

Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 14, 期 6, 页码 1363-1377

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1462-2920.2011.02612.x

关键词

-

资金

  1. Gordon and Betty Moore Foundation
  2. National Science Foundation (NSF)
  3. Office of Science, Biological and Environmental Research, US Department of Energy
  4. NSF Science and Technology Center [EF0424599]

向作者/读者索取更多资源

Primary productivity in the ocean's oligotrophic regions is often limited by phosphorus (P) availability. In low phosphate environments, the prevalence of many genes involved in P acquisition is elevated, suggesting that the ability to effectively access diverse P sources is advantageous for organisms inhabiting these regions. Prochlorococcus, the numerically dominant primary producer in the oligotrophic ocean, encodes high-affinity P transporters, P regulatory proteins and enzymes for organic phosphate utilization, but its ability to use reduced P compounds has not been previously demonstrated. Because Prochlorococcus strain MIT9301 encodes genes similar to phnY and phnZ, which constitute a novel marine bacterial 2-aminoethylphosphonate (2-AEPn) utilization pathway, it has been suggested that this organism might use 2-AEPn as an alternative P source. We show here that although MIT9301 was unable to use 2-AEPn as a sole P source under standard culture conditions, it was able to use phosphite. Phosphite utilization by MIT9301 appears to be mediated by an NAD-dependent phosphite dehydrogenase encoded by ptxD. We show that phosphite utilization genes are present in diverse marine microbes and that their abundance is higher in low-P waters. These results strongly suggest that phosphite represents a previously unrecognized component of the marine P cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据