4.6 Article

Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 14, 期 1, 页码 67-81

出版社

WILEY
DOI: 10.1111/j.1462-2920.2011.02468.x

关键词

-

资金

  1. NSF [IOS-0717494, OCE-0927829]
  2. Rutgers
  3. Rutgers' Aresty Summer Science Research Program
  4. IMCS Research Internship in Ocean Sciences
  5. Directorate For Geosciences [0927829] Funding Source: National Science Foundation

向作者/读者索取更多资源

Low iron (Fe) availability critically limits diatom distribution and productivity in vast regions of the modern ocean, such as open-ocean, high nutrient low chlorophyll areas and coastal regimes characterized as Fe limitation 'mosaics'. While unique strategies of Fe uptake and storage confer competitive advantages to pennate diatoms, the molecular determinants of low Fe acclimation are largely unknown in centric diatoms. We combined genome-wide and targeted comparative transcriptomic analysis with diagnostic biochemistry and in vivo cell staining as a platform to identify the suite of genes involved in acclimation to Fe and associated oxidative stress in Thalassiosira pseudonana. A total of 1312 genes, nearly 12% of the total genome content, responded to Fe starvation in growing cells characterized by low photosynthetic efficiency and enhanced oxidative stress, caspase activity and metacaspase expression. While 82% of the most highly upregulated genes were also represented in EST libraries derived from diverse diatoms grown under various stress conditions (e.g. silicon, CO2 and nitrogen limitation), our analysis suggests that T. pseudonana mounts a unique molecular response to Fe starvation that includes a number of genes distinct from those of the model pennate diatom, Phaeodactylum tricornutum, which diverged similar to 90 million years ago. Homologues to similar to 50% of the upregulated genes were also identified in a metatranscriptome of eukaryotic phytoplankton communities from a chronically Fe-limited region in the Northeast Pacific. Furthermore, we provide experimental evidence that a subset of putative death-related genes participate in the cellular acclimation to low Fe and associated oxidative damage, suggesting that they co-evolved with other metabolic pathways and play adaptive roles in the success of diatoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据