4.6 Article

Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 11, 期 7, 页码 1658-1671

出版社

WILEY
DOI: 10.1111/j.1462-2920.2009.01891.x

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

P>Agricultural ecosystems annually receive approximately 25% of the global nitrogen input, much of which is oxidized at least once by ammonia-oxidizing prokaryotes to complete the nitrogen cycle. Recent discoveries have expanded the known ammonia-oxidizing prokaryotes from the domain Bacteria to Archaea. However, in the complex soil environment it remains unclear whether ammonia oxidation is exclusively or predominantly linked to Archaea as implied by their exceptionally high abundance. Here we show that Bacteria rather than Archaea functionally dominate ammonia oxidation in an agricultural soil, despite the fact that archaeal versus bacterial amoA genes are numerically more dominant. In soil microcosms, in which ammonia oxidation was stimulated by ammonium and inhibited by acetylene, activity change was paralleled by abundance change of bacterial but not of archaeal amoA gene copy numbers. Molecular fingerprinting of amoA genes also coupled ammonia oxidation activity with bacterial but not archaeal amoA gene patterns. DNA-stable isotope probing demonstrated CO2 assimilation by Bacteria rather than Archaea. Our results indicate that Archaea were not important for ammonia oxidation in the agricultural soil tested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据