4.6 Article

Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 10, 期 6, 页码 1526-1535

出版社

WILEY
DOI: 10.1111/j.1462-2920.2008.01568.x

关键词

-

资金

  1. Natural Environment Research Council [NE/C507902/1] Funding Source: researchfish

向作者/读者索取更多资源

The concentrations of one-carbon substrates that fuel methylotrophic microbial communities in the ocean are limited and the specialized guilds of bacteria that use these molecules may exist at low relative abundance. As a result, these organisms are difficult to identify and are often missed with existing cultivation and gene retrieval methods. Here, we demonstrate a novel proof of concept: using environmentally-relevant substrate concentrations in stable-isotope probing (SIP) incubations to yield sufficient DNA for large-insert metagenomic analysis through multiple displacement amplification (MDA). A marine surface-water sample was labelled sufficiently by incubation with near in situ concentrations of methanol. Picogram quantities of labelled C-13-DNA were purified from caesium chloride gradients, amplified with MDA to produce microgram amounts of high-molecular-weight DNA (<= 40 kb) and cloned to produce a fosmid library of > 10 000 clones. Denaturing gradient gel electrophoresis (DGGE) demonstrated minimal bias associated with the MDA step and implicated Methylophaga-like phylotypes with the marine metabolism of methanol. Polymerase chain reaction screening of 1500 clones revealed a methanol dehydrogenase (MDH) containing insert and shotgun sequencing of this insert resulted in the assembly of a 9-kb fragment of DNA encoding a cluster of enzymes involved in MDH biosynthesis, regulation and assembly. This novel combination of methodology enables future structure-function studies of microbial communities to achieve the long-desired goal of identifying active microbial populations using in situ conditions and performing a directed metagenomic analysis for these ecologically relevant microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据