4.6 Article

Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 10, 期 12, 页码 3305-3316

出版社

WILEY
DOI: 10.1111/j.1462-2920.2008.01722.x

关键词

-

资金

  1. EU
  2. GTD Ingenieria de Sistemas y de Software (Barcelona, Spain)
  3. Spanish Ministery of Education and Science

向作者/读者索取更多资源

A broad host range, orthogonal genetic platform has been developed to format sensor circuits in the chromosome of Gram-negative microorganisms destined for environmental release as bioindicators of toxic or perilous compounds (e.g. explosives) in soil. The genetic scheme includes the generation of a genomic landing pad for the sensor module with a Tn5-mini-transposon bearing an optimal attTn7 sequence and a choice of reporter systems with optical and enzymatic outputs. The array of functional elements thereby inserted in the chromosome match that of a cognate plasmid vector which delivers the transcription factors and the promoters to a frame that places the regulatory parts in front of the reporters. Site-specific recombination sites allow the deletion of antibiotic resistances and enables reporter output prior to deliberate release. The system thus allows the production and maintenance of cells in a pre-release state and its intentional conversion in deliverable strains that fulfil all safety, stability and performance criteria. The combination of such a genetic platform with a variant of the transcriptional regulator XylR of Pseudomonas putida that responds to 2,4-dinitrotoluene has been the basis for the production of strains that emit light upon exposure to residues of explosives in a soil microcosm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据