4.5 Article

Recreational Stream Crossing Effects on Sediment Delivery and Macroinvertebrates in Southwestern Virginia, USA

期刊

ENVIRONMENTAL MANAGEMENT
卷 54, 期 3, 页码 505-516

出版社

SPRINGER
DOI: 10.1007/s00267-014-0328-5

关键词

Recreation ecology; Trail erosion; Water quality; Universal Soil Loss Equation; Water Erosion Prediction Project; Soil erosion

资金

  1. Food and Agricultural Sciences National Needs Graduate and Postgraduate Fellowship (NNF) Grants Program (CSREES Funding Opportunity) [USDA-CSREES-HEP-002116]

向作者/读者索取更多资源

Trail-based recreation has increased over recent decades, raising the environmental management issue of soil erosion that originates from unsurfaced, recreational trail systems. Trail-based soil erosion that occurs near stream crossings represents a non-point source of pollution to streams. We modeled soil erosion rates along multiple-use (hiking, mountain biking, and horseback riding) recreational trails that approach culvert and ford stream crossings as potential sources of sediment input and evaluated whether recreational stream crossings were impacting water quality based on downstream changes in macroinvertebrate-based indices within the Poverty Creek Trail System of the George Washington and Jefferson National Forest in southwestern Virginia, USA. We found modeled soil erosion rates for non-motorized recreational approaches that were lower than published estimates for an off-road vehicle approach, bare horse trails, and bare forest operational skid trail and road approaches, but were 13 times greater than estimated rates for undisturbed forests and 2.4 times greater than a 2-year old clearcut in this region. Estimated soil erosion rates were similar to rates for skid trails and horse trails where best management practices (BMPs) had been implemented. Downstream changes in macroinvertebrate-based indices indicated water quality was lower downstream from crossings than in upstream reference reaches. Our modeled soil erosion rates illustrate recreational stream crossing approaches have the potential to deliver sediment into adjacent streams, particularly where BMPs are not being implemented or where approaches are not properly managed, and as a result can negatively impact water quality below stream crossings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据