4.5 Article

An Evaluation of Several In-Lake Restoration Techniques to Improve the Water Quality Problem (Eutrophication) of Saint-Augustin Lake, Quebec, Canada

期刊

ENVIRONMENTAL MANAGEMENT
卷 49, 期 5, 页码 1037-1053

出版社

SPRINGER
DOI: 10.1007/s00267-012-9840-7

关键词

Keywords Eutrophication; Phosphorus; Integrated watershed management plan; Restoration technique; Water quality; Microcosm assay tests

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Ministere du Developpement durable, de l'Environnement et des Parcs (MDDEP)
  3. Ministere des Transports du Quebec (MTQ)
  4. Ville de Quebec
  5. Ville de Saint-Augustin-de-Desmaures

向作者/读者索取更多资源

Increasing phosphorus (P) content and decreasing water quality of Saint-Augustin Lake, Quebec City, Canada, has led to implementation of an Integrated Watershed Management Plan to restore the lake. As a part of the plan, the effects of different restoration techniques on lake water quality and biological community (i.e., biological compatibility) were assessed during an isolated water enclosure study and laboratory microcosm assay, respectively. The restoration techniques include: (i) coagulation of P by alum only (20 mg L-1), (ii) active capping of sediments using a calcite layer of 10 cm, and (iii) a complete method involving both alum coagulation and calcite capping. The results showed that the total P (TP) was greatly decreased (76-95 %) by alum + calcite, followed by calcite only (59-84 %). Secchi depth was 106 % greater and chlorophyll a concentrations were declined by 19-78 % in the enclosure which received both alum and calcite. Results of the biological compatibility test showed that total phytoplankton biomass declined by 31 % in microcosms composed of alum + calcite. No significant (P > 0.05) toxic effect was found on the survival of Daphnia magna and Hyalella azteca in both alum only and alum + calcite microcosms. Although the alum + calcite technique impaired the survival of Chironomus riparius, the midge emergence was much higher compared to alum only and control. Overall, the alum + calcite application was effective in controlling P release from sediment and lowering water column P concentrations, and thus improving the water quality and aquatic life of Saint-Augustin Lake. However, the TP concentrations are still higher than the critical limit (20 mu g L-1) for aquatic life and the water column remained in the eutrophic state even after treatment. Increased TP concentrations, to higher than ambient levels of the lake, in the water column of all four enclosures, due to bioturbation artefact triggered by the platform installation, likely cause insufficient dosages of alum and/or calcite applied and reduced their effectiveness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据