4.7 Article

Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 120, 期 6, 页码 831-839

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.1104301

关键词

air quality; climate change; health impact analysis; outdoor air; particulate matter

资金

  1. Medical Research Council [G0801056B] Funding Source: researchfish
  2. Directorate For Geosciences
  3. Div Atmospheric & Geospace Sciences [1016496] Funding Source: National Science Foundation
  4. NIEHS NIH HHS [P30 ES000002] Funding Source: Medline

向作者/读者索取更多资源

BACKGROUND: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM <= 2.5 mu m in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health bene-fits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of non-methane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are under-estimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据