4.7 Article

Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential-The RAPTES Project

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 120, 期 8, 页码 1183-1189

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.1104389

关键词

air pollution; experimental exposure; FENO; FEV1; FVC; oxidative potential; PM; ultrafine particles

资金

  1. National Institute for Public Health and the Environment (RIVM) Strategic Research Program [S630002]
  2. Medical Research Council [G0801056B, G1000758, G1000758B] Funding Source: researchfish

向作者/读者索取更多资源

BACKGROUND: Specific characteristics of particulate matter (PM) responsible for associations with respiratory health observed in epidemiological studies are not well established. High correlations among, and differential measurement errors of, individual components contribute to this uncertainty. OBJECTIVES: We investigated which characteristics of PM have the most consistent associations with acute changes in respiratory function in healthy volunteers. METHODS: We used a semiexperimental design to accurately assess exposure. We increased exposure contrast and reduced correlations among PM characteristics by exposing volunteers at five different locations: an underground train station, two traffic sites, a farm, and an urban background site. Each of the 31 participants was exposed for 5 hr while exercising intermittently, three to seven times at different locations during March-October 2009. We measured PM10, PM2.5, particle number concentrations (PNC), absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and PM oxidative potential. Lung function [FEV1 (forced expiratory volume in 1 sec), FVC (forced vital capacity), FEF25-75 (forced expiratory flow at 25-75% of vital capacity), and PEF (peak expiratory flow)] and fractional exhaled nitric oxide (FENO) were measured before and at three time points after exposure. Data were analyzed with mixed linear regression. RESULTS: An interquartile increase in PNC (33,000 particles/cm(3)) was associated with an 11% [95% confidence interval (CI): 5, 17%] and 12% (95% CI: 6, 17%) FENO increase over baseline immediately and at 2 hr postexposure, respectively. A 7% (95% CI: 0.5, 14%) increase persisted until the following morning. These associations were robust and insensitive to adjustment for other pollutants. Similarly consistent associations were seen between FVC and FEV1 with PNC, NO2 (nitrogen dioxide), and NOx (nitrogen oxides). CONCLUSIONS: Changes in PNC, NO2, and NOx were associated with evidence of acute airway inflammation (i.e., FENO) and impaired lung function. PM mass concentration and PM10 oxidative potential were not predictive of the observed acute responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据