4.7 Article

In Vivo Measurement of Brain GABA Concentrations by Magnetic Resonance Spectroscopy in Smelters Occupationally Exposed to Manganese

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 119, 期 2, 页码 219-224

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.1002192

关键词

GABA; imaging; manganese; metabolism; MRI; MRS; NAA; occupational health; parkinsonism; smelters

资金

  1. U.S. Department of Defense [USAMRMC W81XWH-05-1-0239]
  2. U.S. National Institutes of Health/National Institute of Environmental Health Sciences [ES-017498, ES-008146]
  3. Chinese Science Technology Ministry [2006BAI06B02]
  4. Guangxi Science and Technology Commission [0991129]

向作者/读者索取更多资源

BACKGROUND: Exposure to excessive levels of manganese (Mn) is known to induce psychiatric and motor disorders, including parkinsonian symptoms. Therefore, finding a reliable means for early detection of Mn neurotoxicity is desirable. OBJECTIVES: Our goal was to determine whether in vivo brain levels of.-aminobutyric acid (GABA), N-acetylaspartate (NAA), and other brain metabolites in male smelters were altered as a consequence of Mn exposure. METHODS: We used T1-weighted magnetic resonance imaging (MRI) to visualize Mn deposition in the brain. Magnetic resonance spectroscopy (MRS) was used to quantify concentrations of NAA, glutamate, and other brain metabolites in globus pallidus, putamen, thalamus, and frontal cortex from a well-established cohort of 10 male Mn-exposed smelters and 10 male age-matched control subjects. We used the MEGA-PRESS MRS sequence to determine GABA levels in a region encompassing the thalamus and adjacent parts of the basal ganglia [GABA-VOI (volume of interest)]. RESULTS: Seven of 10 exposed subjects showed clear T(1)-hyperintense signals in the globus pallidus indicating Mn accumulation. We found a significant increase (82%; p = 0.014) in the ratio of GABA to total creatine (GABA/tCr) in the GABA-VOI of Mn-exposed subjects, as well as a distinct decrease (9%; p = 0.04) of NAA/tCr in frontal cortex that strongly correlated with cumulative Mn exposure (R = -0.93; p < 0.001). CONCLUSIONS: We demonstrated elevated GABA levels in the thalamus and adjacent basal ganglia and decreased NAA levels in the frontal cortex, indicating neuronal dysfunction in a brain area not primarily targeted by Mn. Therefore, the noninvasive in vivo MRS measurement of GABA and NAA may prove to be a powerful tool for detecting presymptomatic effects of Mn neuro-toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据