4.7 Article

Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 118, 期 12, 页码 1714-1720

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.1002180

关键词

androgen; chemical prioritization; data integration; endocrine disruption; estrogen; screening; ToxCast; toxicity profile; ToxPi

向作者/读者索取更多资源

BACKGROUND: The prioritization of chemicals for toxicity testing is a primary goal of the U. S. Environmental Protection Agency (EPA) ToxCast (TM) program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U. S. EPA's Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. OBJECTIVE: The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. METHODS: Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. RESULTS: Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. CONCLUSIONS: Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical's potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据