4.7 Article

Concentrated Ambient Particles Alter Myocardial Blood Flow during Acute Ischemia in Conscious Canines

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 117, 期 3, 页码 333-337

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.11380

关键词

coronary vasoconstriction; microspheres; myocardial blood flow; myocardial ischemia; particulate air pollution

资金

  1. U.S. Environmental Protection Agency (U.S. EPA) [RD831917, R827353, R832416]
  2. National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH) [ES012972, ES00002]

向作者/读者索取更多资源

BACKGROUND: Experimental and observational studies have demonstrated that short-term exposure to ambient particulate matter (PM) exacerbates myocardial ischemia. OBJECTIVES: We conducted this study to investigate the effects of concentrated ambient particles (CAPs) on myocardial blood flow during myocardial ischemia in chronically instrumented conscious canines. METHODS: Eleven canines were instrumented with a balloon occluder around the left anterior descending coronary artery and catheters for determination of myocardial blood flow using fluorescent microspheres. Telemetric electrocardiographic and blood pressure monitoring was available for four of these animals. After recovery, we exposed animals by inhalation to 5 hr of either filtered air or CAN (mean concentration +/- SD, 349.0 +/- 282.6 mu g/m(3)) in a crossover protocol. We determined myocardial blood flow during a 5-min coronary artery occlusion immediately after each exposure. Data were analyzed using mixed models for repeated measures. The primary analysis was based on four canines that completed the protocol. RESULTS: CAPs exposure decreased total myocardial blood flow during coronary artery occlusion by 0.12 mL/min/g (p < 0.001) and was accompanied by a 13% (p < 0.001) increase in coronary vascular resistance. Rate-pressure product, an index of myocardial oxygen demand, did not differ by exposure (p = 0.90). CAPs effects on myocardial blood flow were significantly more pronounced in myocardium within or near the ischemic zone versus more remote myocardium, (p interaction < 0.001). CONCLUSIONS: These results suggest that PM exacerbates myocardial ischemia by increased coronary vascular resistance and decreased myocardial perfusion. Further studies are needed to elucidate the mechanism of these effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据