4.7 Article

Exposure of Neonatal Rats to Parathion Elicits Sex-Selective Reprogramming of Metabolism and Alters the Response to a High-Fat Diet in Adulthood

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 116, 期 11, 页码 1456-1462

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.11673

关键词

developing rat; diabetes; glucose homeostasis; high-fat diet; insulin; lipid homeostasis; obesity; organophosphate insecticides; parathion

资金

  1. National Institutes of Health [ES10356]
  2. Leon Golberg Postdoctoral Fellowship

向作者/读者索取更多资源

BACKGROUND: Developmental exposures to organophosphate pesticides are virtually ubiquitous. These agents are neurotoxicants, but recent evidence also points to lasting effects on metabolism. OBJECTIVES: We administered parathion to neonatal rats. In adulthood, we assessed the impact on weight gain, food consumption, and glucose and lipid homeostasis, as well as the interaction with the effects of a high-fat diet. METHODS: Neonatal rats were given parathion on postnatal days 1-4 using doses (0.1 or 0.2 mg/kg/day) that straddle the threshold for barely detectable cholinesterase inhibition and the first signs of systemic toxicity. In adulthood, animals were either maintained on standard lab chow or switched to a high-fat diet for 7 weeks. RESULTS: In male rats on a normal diet, the low-dose parathion exposure caused increased weight gain but also evoked signs of a prediabetic state, with elevated fasting serum glucose and impaired fat metabolism. The higher dose of parathion reversed the weight gain and caused further metabolic defects. Females showed greater sensitivity to metabolic disruption, with weight loss at either parathion dose, and greater imbalances in glucose and lipid metabolism. At 0.1 mg/kg/day parathion, females showed enhanced weight gain on the high-fat diet; This effect was reversed in the 0.2-mg/kg/day parathion group, and was accompanied by, even greater deficits in glucose and fat metabolism. CONCLUSIONS: Neonatal low-dose parathion exposure disrupts glucose and fat homeostasis in a persistent and sex-selective manner. Early-life toxicant exposure to organophosphates or other environmental chemicals may, play a role in the increased incidence of obesity and diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据