4.2 Article

New analytical formulations for calculation of dispersion parameters of Gaussian model using parallel CFD

期刊

ENVIRONMENTAL FLUID MECHANICS
卷 13, 期 2, 页码 125-144

出版社

SPRINGER
DOI: 10.1007/s10652-012-9260-5

关键词

Air pollution; Gaussian model; Dispersion parameters; Parallel CFD; Analytical formulation

向作者/读者索取更多资源

New analytical formulations are presented for calculation of most effective parameters in the Gaussian plume dispersion model; the standard deviations of concentration for horizontal and vertical dispersion in neutral atmosphere conditions. Employing parallel Computational Fluid Dynamics (CFD) as a powerful tool, some well-known analytical generations of Pasquill-Gifford-Turner experimental data are modified. To achieve this aim, CFD simulations are carried out for single stack dispersion on flat terrain surface and ground level concentrations are determined in different distances. An inverse procedure in Gaussian plume dispersion model is then applied and standard deviations of horizontal and vertical dispersions are obtained. The values are compared with those of the well-known methods of Doury, Briggs and Hanna in two cases: the experimental data for release of krypton-85 from 100 m high and pollution dispersion from three 28 m high stacks of Besat power plant near Tehran. The comparison indicates that new formulations for plume dispersion are more accurate than other well-known formulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据