4.2 Article

Quantification of advective solute travel times and mass transport through hydrological catchments

期刊

ENVIRONMENTAL FLUID MECHANICS
卷 10, 期 1-2, 页码 103-120

出版社

SPRINGER
DOI: 10.1007/s10652-009-9147-2

关键词

Hydrology; Travel time; Solute transport; Natural attenuation; Catchment; Groundwater-surface water interactions

向作者/读者索取更多资源

This study has investigated and outlined the possible quantification and mapping of the distributions of advective solute travel times through hydrological catchments. These distributions are essential for understanding how local water flow and solute transport and attenuation processes affect the catchment-scale transport of solute, for instance with regard to biogeochemical cycling, contamination persistence and water quality. The spatial and statistical distributions of advective travel times have been quantified based on reported hydrological flow and mass-transport modeling results for two coastal Swedish catchments. The results show that the combined travel time distributions for the groundwater-stream network continuum in these catchments depend largely on the groundwater system and model representation, in particular regarding the spatial variability of groundwater hydraulic parameters (conductivity, porosity and gradient), and the possible contributions of slower/deeper groundwater flow components. Model assumptions about the spatial variability of groundwater hydraulic properties can thus greatly affect model results of catchment-scale solute spreading. The importance of advective travel time variability for the total mass delivery of naturally attenuated solute (tracer, nutrient, pollutant) from a catchment to its downstream water recipient depends on the product of catchment-average physical travel time and attenuation rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据