4.8 Article

Silk Macromolecules with Amino Acid Poly(Ethylene Glycol) Grafts for Controlling Layer-by-Layer Encapsulation and Aggregation of Recombinant Bacterial Cells

期刊

ACS NANO
卷 9, 期 2, 页码 1219-1235

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nn504890z

关键词

brush silk polyelectrolytes; layer-by-layer (LbL) assembly; bacterial cells; hydrogen bonded shells

资金

  1. Air Force Office of Scientific Research [FA9550-14-1-0269, FA9550-09-1-0162]
  2. NSF [CBET-1402712]

向作者/读者索取更多资源

This study introduces double-brush designs of functionalized silk polyelectrolytes based upon regenerated silk fibroin (SF), which is modified with poly-l-lysine (SF-PLL), poly-l-glutamic acid (SF-PGA), and poly(ethylene glycol) (PEG) side chains with different grafting architecture and variable amino acid-PEG graft composition for cell encapsulation. The molecular weight of poly amino acids (length of side chains), molecular weight and degree of PEG grafting (D) were varied in order to assess the formation of cytocompatible and robust layer-by-layer (LbL) shells on two types of bacterial cells (Gram-negative and Gram-positive bacteria). We observed that shells assembled with charged polycationic amino acids adversely effected the properties of microbial cells while promoting the formation of large cell aggregates. In contrast, hydrogen-bonded shells with high PEG grafting density were the most cytocompatible, while promoting formation of stable colloidal suspensions of individual cell encapsulates. The stability to degradation of silk shells (under standard cell incubation procedure) was related to the intrinsic properties of thermodynamic bonding forces, with shells based on electrostatic interactions having stronger resistance to deterioration compared to pure hydrogen-bonded silk shells. By optimizing the charge density of silk polyelectrolytes brushes, as well as the length and the degree of PEG side grafts, robust and cytocompatible cell coatings were engineered that can control aggregation of cells for biosensor devices and other potential biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据