4.2 Article

Effects of prey size structure and turbulence on feeding and growth of anchovy larvae

期刊

ENVIRONMENTAL BIOLOGY OF FISHES
卷 96, 期 9, 页码 1045-1063

出版社

SPRINGER
DOI: 10.1007/s10641-012-0102-6

关键词

Fish larva; Prey size spectra; Foraging model; Turbulence; Visual perceptive volume

资金

  1. Norwegian Research Council

向作者/读者索取更多资源

Foraging processes in plankton and planktivorous fish are constrained by relative prey and predator size and therefore, these are important variables to include in a foraging model. The distribution of prey biomass across different size classes can be characterized by a size spectrum slope. We present a foraging model for anchovy larvae including the most relevant processes such as prey encounter, capture- and pursuit success, all influenced by light, turbulence and prey characteristics. We modelled ingestion rates and specific growth rate by coupling the foraging model with an existing bioenergetic model, and performed a sensitivity analysis of prey ingestion in turbulent environments assuming either hemispherical or conical perceptive volume. Our results suggest that turbulence has no positive effect because of the low capture ability, small prey size and small visual volume for anchovy larvae. The predicted ingestion is too low to sustain the growth potential of larvae when assuming conical perceptive volume even under prey densities substantially higher than normally found in the field. Ingestion rate is sensitive to the total biomass and the slope of the prey size spectra, specifically because it determines the abundance of prey around the optimal size for the larvae. The model also suggests that small larvae benefit from a prey size structure with steep prey size-spectra slope while a large larva benefit from less steep slopes. The model can act as a link between size-spectra measurements from the field and the foraging conditions of larval anchovies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据