4.2 Review

Measurement of Oxidative Damage to DNA in Nanomaterial Exposed Cells and Animals

期刊

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS
卷 56, 期 2, 页码 97-110

出版社

WILEY
DOI: 10.1002/em.21899

关键词

diesel exhaust particles; FPG; hOGG1; methylmethane sulfonate; Printex 90; 8-oxodG

资金

  1. Center for Pharmaceutical Nanotechnology and Nanotoxicology
  2. Lundbeck Foundation Center for Biomembranes in Nanomedicine
  3. Danish Centre for Nanosafety from the Danish Working Environment Research Foundation [20110092173/3]

向作者/读者索取更多资源

Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured by chromatographic assays, antibody-based methods or the comet assay with DNA repair enzymes. However, spurious oxidation of DNA has been a problem in certain studies applying chromatographic assays, yielding high baseline levels of 8-oxodG. Antibody-based assays detect high 8-oxodG baseline levels, related to cross-reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations between exposure to ENMs and oxidized DNA in tissue than studies showing acceptable baseline levels (odds ratio=12.1, 95% confidence interval: 1.2-124). Nevertheless, reliable studies indicate that intratracheal instillation of nanosized carbon black is associated with increased levels of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2, carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen. 56:97-110, 2015. (c) 2014 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据