4.2 Article

Exposure of HepG2 Cells to Low Levels of PAH-Containing Extracts from Contaminated Soils Results in Unpredictable Genotoxic Stress Responses

期刊

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS
卷 50, 期 4, 页码 337-348

出版社

WILEY
DOI: 10.1002/em.20486

关键词

oxy-PAH; Mdm2; H2AX; 53BP1

资金

  1. Cancer- och Allergifonden, Integrated Assessment of Environmental Stressors in Europe (EU Sixth Framework Program)

向作者/读者索取更多资源

Contaminated soil is a serious environmental problem, constituting a risk to humans and the environment. Polycyclic aromatic hydrocarbons (PAHs) are often present at contaminated sites. However, risk levels are difficult to estimate because of the complexity of contaminants present. Here, we compare cellular effects of extracts from contaminated soils collected at six industrial settings in Sweden. Chemical analysis showed that all soils contained complex mixtures of PAHs and oxy-PAHs. Western blotting and immunocytochemistry were used to investigate DNA damage signaling in HepG2 cells exposed to extracts from these soils. The effects on phosphorylated Mdm2, p53, Erk, H2AX, 53BP1, and Chk2, cell cycle regulating proteins (cyclin D1 and p21), and cell proliferation were compared. We found that most soil extracts induced phosphorylation of Mdm2 at the 2A10 epitope at low concentrations. This is in line with previous studies suggesting that this endpoint reflects readily repaired DNA-damage. However, we found concentration and time-dependent gamma H2AX and 53BP1 responses that were sustained for 48 hr. These endpoints may reflect the presence of different types of persistent DNA-damage. High concentrations of soil extracts decreased cyclin D1 and increased p21 response, indicating cell cycle arrest. Phosphorylation of Mdm2 at Ser 166, which attenuates the p53 response and is induced by many tumor promoters, was induced in a time-dependent manner and was associated with Erk phosphorylation. Taken together, the PAH extracts elicited unpredictable signaling responses that differed between samples. More polar compounds, i.e., oxy-PAHs, also contributed to the complexity. Environ. Mal. Mutagen. 50:337-348, 2009. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据