4.7 Article

Variation in snow cover drives differences in frost resistance in seedlings of the alpine herb Aciphylla glacialis

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 106, 期 -, 页码 174-181

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2014.02.011

关键词

Snow cover duration; Cold acclimation; Microclimate; Leaf temperature; Climate change

资金

  1. Australian Research Council [DP110105380, LP0991593]
  2. CONICYT
  3. Australian Research Council [LP0991593] Funding Source: Australian Research Council

向作者/读者索取更多资源

Snow cover protects alpine plants from winter frost damage, keeping them under warmer and more stable temperatures than if there were no snow. Future climate scenarios predict less snow cover and earlier snow melt due to warming, causing paradoxically colder winters in a warmer climate. We compared intraspecific variation in cold tolerance between early snow melt (ESM) and late snow melt (LSM) populations of Aciphylla glacialis. Seedlings grown under common conditions were found to differ in cold tolerance consistent with their habitat of origin. ESM seedlings were more frost resistant and had a greater capacity to increase frost resistance in response to low temperatures than LSM seedlings. These results emphasise the relevance of microclimatic heterogeneity in driving physiological differences that might buffer some effects of climate change. Loss of snow cover could increase vulnerability of A. glacialis to lethal freezing in LSM sites whereas plants with greater frost tolerance in adjacent colder habitats (ESM sites) would be protected. Thus, intraspecific differentiation in tolerance of climatic stresses in combination with microclimatic refuges provided by topographic variation could enhance survival of some alpine species as climate warming progresses. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据