4.7 Article

Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 98, 期 -, 页码 20-31

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2013.10.005

关键词

Arbuscular mycorrhiza; Photosynthesis; Productivity; Protein synthesis; Salinity; Wheat

向作者/读者索取更多资源

Little information is available concerning arbuscular mycorrhizal fungi (AMF) influence on carbon and nitrogen metabolisms in wheat under saline conditions. Thus, this study will shed light on some different mechanisms that play a role in the protection of wheat plants colonized by AMF against hyperosmotic salinity. Two wheat (Triticum aestivum L) cultivars, Sids 1 and Giza 168, were grown under non-saline or saline conditions (4.7 and 9.4 dS m(-1)) with and without AMF inoculation. Root colonization was adversely affected by increasing salinity level, particularly in Giza 168. Soil salinity decreased plant productivity, membrane stability index, photochemical reactions of photosynthesis, the concentrations of N, nitrate, chlorophyll, carbohydrates, and protein, the relative water content, and the activities of nitrate reductase and carbonic anhydrase. The reduction was more pronounced in Giza 168. Mycorrhizal symbiosis protected wheat against the detrimental effect of salinity and significantly improved the above parameters, especially in Sids 1. Under saline conditions, wheat plants colonized by AMF had higher gas exchange capacity (increased net CO2 assimilation rate and stomatal conductance, and decreased intercellular CO2 concentration), compared with non-mycorrhizal ones. Concentrations of soluble sugars, free amino acids, proline and glycinebetaine increased under saline conditions; these increases were more marked in salt-stressed plants colonized by AMF, especially in Sids 1. Soil salinization induced oxidative damage through increased lipid peroxidation and hydrogen peroxide levels, particularly in Giza 168. Mycorrhizal colonization altered plant physiology and significantly reduced the oxidative damage in plants exposed to salinity. Enhanced metabolism of carbon and nitrogen can be one of the most important mechanisms of plant adaptation to saline soils that are activated by AMF. This is the first report dealing with mycorrhization effect on the activity of carbonic anhydrase under saline conditions. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据