4.7 Review

Adaptive mechanisms of freeze avoidance in plants: A brief update

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 99, 期 -, 页码 133-140

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2013.11.011

关键词

Biological ice nucleation; Ice propagation; Deep supercooling; Infrared video thermography; Frost injury; Alpine ecology

向作者/读者索取更多资源

Freeze avoidance has evolved in plants in response to selection pressures brought about by exposure to freezing temperatures. It is a multifaceted adaptive mechanism with many attributes. Despite the prevalence of freeze avoidance as an adaptive mechanism, little research has been devoted in recent times to understanding the underlying mechanisms and regulation of freeze avoidance. Therefore, there is no shortage of questions that need to be addressed. Inherent in understanding how plants respond to freezing temperatures is the need to also understand the properties of water at different temperatures and how the interaction of water with biological substances affects these properties. This review provides an overview of the subject of biological ice nucleation and propagation and how various aspects of plant structure and composition can affect the freezing process. Deep supercooling of plant tissues represents the most extreme example of freeze avoidance. The potential role of anti-nucleating substances in defining the ability to deep supercool is also discussed. The importance of studying intact plants in their natural environments is emphasized. Although, this adds a high degree of complexity to investigations, it is in this context that adaptive mechanisms have evolved and play a role in the biology and survival of plants. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据