4.7 Article

Fluorescence-based sensing of drought-induced stress in the vegetative phase of four contrasting wheat genotypes

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 89, 期 -, 页码 51-59

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2013.01.003

关键词

Genotype screening; Multiple fluorescence excitation; Non-destructive measurements; Optical sensors; Water deficit

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

The aim of this study was to analyse drought-induced changes of the blue (BF), green (GF), and far-red (FR) fluorescence of two T. aestivum (Sumo and Tulsa) and two T. durum (Trinakria and Creso) wheat cultivars; Sumo and Trinakria have previously been characterised as comparatively drought tolerant. As a result of water deficit, the BF, GF, and FR fluorescence intensities and several fluorescence ratios significantly changed in these cultivars when grown under greenhouse and climate chamber conditions. However, the observed modifications were partially reversible, and, in most cases, the re-watering of drought stressed plants caused the fluorescence signals to approach the values of the control plants. The most robust fluorescence index to indicate drought stress was the UV-excited blue-to-far-red fluorescence ratio (BFRR), which significantly increased irrespective of the wheat cultivar and the physiological age of the tissue. The reduction of the UV-induced FR fluorescence, which was associated with leaf shrinkage, the reduction of the chlorophyll content, and the increase in flavonols in the epidermis was responsible for the increase of BFRR. The cultivars previously classified as more tolerant to drought (Sumo and Trinakria) had a stronger BFRR modification compared to the sensitive cultivars (Tulsa and Creso). Thus, we conclude that drought-induced stress in the vegetative phase can be rapidly and non-destructively sensed with multiparametric fluorescence devices. Due to their robustness, multiparametric fluorescence-based indices also have a large potential to support the in-field characterisation of the drought tolerance of genotypes. Furthermore, the short-term modification of the indices after drought and re-watering reveal the potential of these parameters as additional tool for crop management. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据