4.7 Article Proceedings Paper

Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 92, 期 -, 页码 73-82

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2012.07.002

关键词

Flooding; Halophyte; Tissue lactate; Soil oxygen; Underwater photosynthesis; Wetland plant

向作者/读者索取更多资源

Habitats occupied by many halophytes are not only saline, but are also prone to flooding and yet surprisingly few studies have evaluated submergence tolerance in halophytes. Sediment, floodwater, and intra-plant O-2 dynamics were evaluated during tidal submergence for the leaf-succulent halophyte Suaeda maritime (L.) Dum. For S. maritime growing in soil just above the mud flat in a UK salt marsh, the soil was only moderately hypoxic just prior to tidal inundation, presumably owing to drainage and O-2 entry facilitated by frequent, large cracks. O-2 declined to very low levels following high tide. By contrast, mud flat sediment remained waterlogged, lacked cracks, and was anoxic. Plant O-2 dynamics were investigated using field-collected plants in sediment blocks transported to a controlled-submergence system in a glasshouse. Submergence during night-time resulted in anoxia within leaves, whereas during day-time O-2 was produced by underwater photosynthesis. The thin lateral roots of S. maritima presumably access some O-2 from hypoxic sediments, but could also experience transient episodes of severe hypokia/anoxia, especially as any internal O-2 movement from shoots would be small owing to the low gas-filled porosity in roots. Fermentative metabolism to lactate, producing some ATP in the absence of O-2, might contribute to tolerance of transient O-2 deficits. Lactate was high in root tissues, whereas ethanol production (tissue and incubation medium contents) was low, both in comparison with values reported for other species. Our findings demonstrate the importance of tolerance to transient waterlogging and submergence for the halophyte S. maritime growing in a tidal salt marsh. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据