4.6 Article

Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines

期刊

ENTROPY
卷 20, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/e20080583

关键词

born machine; tensor network; mutual information

资金

  1. National R&D Program of China [2017YFA0302901]
  2. National Natural Science Foundation of China [11190024, 11474331, 11774398]
  3. Ministry of Science and Technology of China [2016YFA0300603]

向作者/读者索取更多资源

We compare and contrast the statistical physics and quantum physics inspired approaches for unsupervised generative modeling of classical data. The two approaches represent probabilities of observed data using energy-based models and quantum states, respectively. Classical and quantum information patterns of the target datasets therefore provide principled guidelines for structural design and learning in these two approaches. Taking the Restricted Boltzmann Machines (RBM) as an example, we analyze the information theoretical bounds of the two approaches. We also estimate the classical mutual information of the standard MNIST datasets and the quantum Renyi entropy of corresponding Matrix Product States (MPS) representations. Both information measures are much smaller compared to their theoretical upper bound and exhibit similar patterns, which imply a common inductive bias of low information complexity. By comparing the performance of RBM with various architectures on the standard MNIST datasets, we found that the RBM with local sparse connection exhibit high learning efficiency, which supports the application of tensor network states in machine learning problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据