4.5 Article

A multi-objective genetic algorithm for the design of pressure swing adsorption

期刊

ENGINEERING OPTIMIZATION
卷 41, 期 9, 页码 833-854

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/03052150903074189

关键词

PSA; air separation; diffusion; multi-objective optimization genetic algorithms

向作者/读者索取更多资源

Pressure Swing Adsorption (PSA) is a cyclic separation process, with advantages over other separation options for middle-scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance in the cyclic steady state. A preliminary investigation is presented of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimization of a fast cycle PSA operation - the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据