4.7 Article

Microbially mediated sand solidification using calcium phosphate compounds

期刊

ENGINEERING GEOLOGY
卷 137, 期 -, 页码 29-39

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2012.03.016

关键词

Biogrout; Calcium phosphate compound; Unconfined compression strength; Ammonia source; Earthquake; Soil liquefaction

向作者/读者索取更多资源

To evaluate the potential utility of a new calcium-phosphate-compound (CPC)-based biogrout (CPC biogrout), we conducted unconfined compressive strength (UCS) tests and scanning electron microscope (SEM) observations of sand test pieces cemented with CPC biogrout. The CPC biogrout was produced using (1) soil extracts that contained microorganisms derived from one of two soils, which had different pH values, and (2) one of three amino acids or urea as a pH-increasing reactant. A temporal increase in pH was observed in slightly acidic soil by the addition of ammonia sources. On the other hand, there was no significant increase in pH in slightly alkaline soil except for that due to urea. In most cases, the UCS of the test pieces cemented with CPC biogrout produced using soil extracts from acidic soil along with an ammonia source was higher than that of the test pieces cemented with CPC biogrout produced without the addition of ammonia sources. SEM observation of test pieces with UCS of over 50 kPa showed the presence of whisker-like CPC crystals. These results suggest that CPC biogrout affords sufficient strength as a countermeasure for soil liquefaction and that amino acids can be used as new pH-increasing reactants for CPC biogrout In addition, they suggest that either CPC biogrout or CPC chemical grout alone, or a combination of the two grouts, can be used depending on the various properties of grounds and soils. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据