4.7 Article

Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan Gneiss, Boryeong Shale, and Yeoncheon Schist in Korea

期刊

ENGINEERING GEOLOGY
卷 147, 期 -, 页码 68-77

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2012.07.015

关键词

Transversely isotropic rock; Elastic modulus; P-wave velocity; Thermal conductivity; Anisotropy ratio

资金

  1. New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Korean government's Ministry of Knowledge Economy [20103010110010]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [20103010110010] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This paper presents the anisotropic characteristics of the elastic moduli, P-wave velocities, and thermal conductivities of three types of anisotropic rocks, i.e., Asan gneiss, Boryeong shale, and Yeoncheon schist, occurring in Korea. The experiments were conducted on rock samples that show clear evidence of transverse isotropy. Cylindrical core samples with different anisotropy angles were prepared by coring at 15-degree intervals from the transversely isotropic plane using the laboratory directional coring system established for this study. Elastic moduli, P-wave velocities, and thermal conductivities were determined along the sample axis for different anisotropy angles. The anisotropy ratio is defined as the ratio of the properties parallel to the transversely isotropic plane to those perpendicular to the plane, and the anisotropy ratios for the thermal conductivities (K-(90 degrees)/K-(0 degrees)) of Asan gneiss, Boryeong shale, and Yeoncheon schist were 1.4, 2.1, and 2.5, respectively. The P-wave velocity anisotropy ratios (V-P(90 degrees)/V-P(0 degrees)) for Asan gneiss. Boryeong shale, and Yeoncheon schist were 1.2, 1.5, and 2.3, respectively. The elastic moduli, P-wave velocities, and thermal conductivities that were obtained were compared with theoretical predictions by mean prediction error (MPE). The correlations between the measured properties were evidently correlated with some minor scatter in the data. The degree of anisotropy measured in this study suggests that ignoring anisotropy in rock properties may mislead to erroneous results. The application of tensorial transformation evaluations revealed that the three types of rocks chosen for this study can be modeled effectively by a transversely isotropic model. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据