4.7 Article Proceedings Paper

The role of rock fragmentation in the motion of large landslides

期刊

ENGINEERING GEOLOGY
卷 109, 期 1-2, 页码 67-79

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2008.11.004

关键词

Debris avalanche; Blockslide; Dynamic rock fragmentation; Rock strength; Runout

向作者/读者索取更多资源

By considering the implications of the comminution generally associated with very large landslides, we arrive at a simple explanation for the remarkably low frictional resistance to motion demonstrated by large intact blockslides (e.g. Waikaremoana, New Zealand), volcanic debris avalanches (e.g. Socompa, Chile) and large rock avalanches (e.g. Falling Mountain. N.Z.), which allows such mass movements to achieve unexpectedly high velocities and long runout distances. During rapid grain flow under high direct stress, the overall grain motion generates stresses in many force chains that strain individual grains to failure; most of the elastic strain energy accumulated in these force chains before failure is returned at failure to the resulting grain fragments, resulting in apparent instantaneous pressures of similar to 3Q on the surroundings, where Q is the ambient strength of the previously intact grains (similar to GPa). These intense pressures support some of the direct force on the shear layer, so that the effective (intergranular) stress in the shear layer is reduced. Because frictional resistance is proportional to effective stress, this reduces the overall frictional resistance to shear. The steady-state effective stress is that which just allows fragmentation to continue; the resistance to motion estimated from this relationship explains to much better than order-of-magnitude accuracy the reported motions of the large, rapid mass movements. We also deduce that grain fragmentation can be sustained for sufficiently long to explain the phenomena without reducing the mean grain size by volume in the granular layer to unrealistically small values. The presence of pore fluid does not appear to influence the effect of fragmentation dynamics in a major way. The proposed mechanism requires further laboratory and simulation studies to reduce its current dependence on limited field data, but its success suggests that it is worthwhile investigating further as an explanation for large mass movements in the types of brittle rock in which fragmentation occurs. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据