4.7 Article

A micromechanical model to study the closure stress effect on fatigue life of Ti6Al4V subjected to laser shock peening

期刊

ENGINEERING FRACTURE MECHANICS
卷 200, 期 -, 页码 327-338

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2018.08.004

关键词

Laser shock peening; Crack propagation behavior; Fatigue life prediction; Closure stress effect; Ti6Al4V

资金

  1. National Natural Science Foundation of China [51601100, 11672141, 11602170, 11572118]
  2. Zhejiang Provincial Natural Science Foundation of China [LQ17E010001, LY17A020001]
  3. Ningbo Natural Science Foundation [2017A610092]
  4. K. C. Wong Magna Fund in Ningbo University

向作者/读者索取更多资源

With the wide application of titanium alloy in various engineering fields, the service life of Ti alloy product has drawn much more attention. It's been proven that the laser shock peening (LSP) is an effective technology to improve the fatigue performance of titanium alloy by introducing a large and deep compressive residual stress. In this paper, a microstructural fracture mechanics model incorporating the crack closure stress effect is presented to investigate the reinforcement mechanism of laser shock peened (LSPed) titanium alloy. Firstly, a rigid-plastic simplified model is utilized to describe the residual stress characteristics of LSPed Ti6Al4V. Then the extended Navarro-Rios model incorporating crack closure stress effect is established to systematically analyze the crack propagation behavior. Finally, the effect of crack closure stress on fatigue life can be accurately predicted. Result shows that the crack propagation processing is a behavior reflecting the deceleration and acceleration of the crack growth rate. A higher threshold stress is required for LSPed Ti6Al4V to promote the propagation of fatigue crack. The closure stress effect reduces the barrier stress and critical crack length in each grain leading to the highly raised fatigue life of LSPed Ti6Al4V. Besides, the closure stress effect has a greater improvement in fatigue performance for a sample with a shorter crack length and thus can be neglected for a long crack.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据