4.7 Article Proceedings Paper

Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods

期刊

ENGINEERING FRACTURE MECHANICS
卷 78, 期 3, 页码 544-558

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2010.03.029

关键词

Cohesive zone model; Mixed-mode crack; Extended finite element method; Fracture criteria

向作者/读者索取更多资源

In conventional cohesive zone models the traction-separation law starts from zero load, so that the model cannot be applied to predict mixed-mode cracking. In the present work the cohesive zone model with a threshold is introduced and applied for simulating different mixed-mode cracks in combining with the extended finite element method. Computational results of cracked specimens show that the crack initiation and propagation under mixed-mode loading conditions can be characterized by the cohesive zone model for normal stress failure. The contribution of the shear stress is negligible. The maximum principal stress predicts crack direction accurately. Computations based on XFEM agree with known experiments very well. The shear stress becomes, however, important for uncracked specimens to catch the correct crack initiation angle. To study mixed-mode cracks one has to introduce a threshold into the cohesive law and to implement the new cohesive zone based on the fracture criterion. In monotonic loading cases it can be easily realized in the extended finite element formulation. For cyclic loading cases convergence of the inelastic computations can be critical. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据