4.7 Article

Homogenized mechanical behavior of composite micro-structures including micro-cracking and contact evolution

期刊

ENGINEERING FRACTURE MECHANICS
卷 76, 期 2, 页码 182-208

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2008.09.006

关键词

Composites; Micromechanics; Finite element analysis; J-integral; Crack growth; Contact

向作者/读者索取更多资源

The aim of this paper is to study the effects of micro-cracking on the homogenized constitutive properties of elastic composite materials. To this end a novel micro-mechanical approach based on homogenization techniques and fracture mechanics concepts, is proposed and an original J-integral formulation is established for composite micro-structures. Accurate non-linear macroscopic constitutive laws are developed for a uniaxial and a shear macro-strain path by taking into account changes in micro-structural configuration owing to crack growth and crack face contact. Numerical results, carried out by coupling a finite element formulation and an interface model, are applied to a porous composite with edge cracks and a debonded short fiber-reinforced composite. The composite micro-structure is controlled by the macroscopic strain and the micro-to-macro transition, settled in a variational formulation, is obtained for three types of boundary conditions, i.e. linear displacements, uniform tractions and periodic fluctuations and anti-periodic tractions. The accuracy of the determined macroscopic constitutive properties to represent the failure characteristics of locally periodic defected composites is also investigated in terms of energy release rate predictions, by comparisons between a direct analysis and homogenization approaches. Results highlight the dependence of the macroscopic constitutive law for a micro-structure with evolving defects on both the macro-strain path and the type of boundary conditions and the capability of the proposed model to provide a failure model for a composite material undergoing micro-cracking and contact. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据