4.7 Article

Solving general convex nonlinear optimization problems by an efficient neurodynamic model

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2012.09.011

关键词

Neural network; Convex programming; Dynamic model; Convergent; Stability

向作者/读者索取更多资源

In this paper, a neural network model is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalle invariance principle to solve general convex nonlinear programming (GCNLP) problems. Based on the Saddle point theorem, the equilibrium point of the proposed neural network is proved to be equivalent to the optimal solution of the GCNLP problem. By employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original problem. The simulation results also show that the proposed neural network is feasible and efficient. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据