4.7 Article

Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engappai.2009.09.005

关键词

Hydraulic hybrid vehicle; Hydrostatic transmission; Optimization matching; Simulated annealing; Genetic algorithm

向作者/读者索取更多资源

Along with the shortage of energy and the increasingly serious pollution of environment in cities, automobile industries all over the world are exploring and developing energy saving and clean automobile. Hydraulic hybrid vehicle has better potential in medium-size and large-size passenger vehicles than its electric counterparts. The key components' sizes have remarkable influence on the vehicle performance and fuel economy, and an optimization process is needed to find the best design parameters for maximum fuel economy while satisfying the vehicle performance constraints. Multi-Objective optimization method based on adaptive simulated annealing genetic algorithm (ASAGA) is proposed to optimize the key components in HHV. In the objective function of the optimization, all the weighting factors can be set with different values according to different requirements. The optimal results show that the proposed method effectively distinguishes the key components' optimal parameters' position of HHV, enhances the performance and fuel consumption. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据