4.8 Article

High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights

期刊

JOURNAL OF POWER SOURCES
卷 285, 期 -, 页码 29-36

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.03.051

关键词

Na-ion batteries (NIBS); Alloy anodes; Electrochemical properties; Elastic properties; Density functional theory (DFT)

向作者/读者索取更多资源

Group-15 elements phosphorus, arsenic, antimony and bismuth offer the prospect of serving as functional alloying elements for developing high-capacity alloy anodes for sodium-ion batteries (NIBs). Here we obtain concentration-dependent electrochemical properties of sodium (Na) alloys with group-15 elements using first principles calculations. Since Na intercalation in these alloys is accompanied by a substantial volume expansion that can lead to mechanical failure and loss of capacity, we have also obtained a full set of concentration-dependent elastic properties for a single crystal as well as a polycrystalline microstructure. We find that sodiation of these alloys results in their significant elastic softening by as large as 60%. In contrast to the group-14 alloys that are also being explored as anodes of NIBs, the elastic softening in group-15 alloys varies in a non-monotonic manner with Na concentration, and more importantly, the maximum degradation of elastic properties does not necessarily occur at full sodiation. Our results provide crucial insights into the electrochemical and mechanical response of these alloys to Na intercalation, thus contributing to the design of failure-resistant architectures of high capacity NIBs. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据