4.8 Article

Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles

期刊

JOURNAL OF POWER SOURCES
卷 286, 期 -, 页码 309-320

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2015.03.178

关键词

Lithium-ion battery; Low-temperature aging; Low-temperature charging; Lithium deposition; Incremental capacity analysis

资金

  1. MOST (Ministry of Science and Technology) of China [2014DFG71590]
  2. Beijing science and technology plan [Z121100007912001]
  3. National Support Plan [2013BAG16B01]
  4. MOE (Ministry of Education) of China [2012DFA81190]

向作者/读者索取更多资源

Charging procedures at low temperatures severely shorten the cycle life of lithium ion batteries due to lithium deposition on the negative electrode. In this paper, cycle life tests are conducted to reveal the influence of the charging current rate and the cut-off voltage limit on the aging mechanisms of a large format LiFePO4 battery at a low temperature (-10 degrees C). The capacity degradation rates accelerate rapidly after the charging current reaches 0.25 C or the cut-off voltage reaches 3.55 V. Therefore the scheduled current and voltage during low-temperature charging should be reconsidered to avoid capacity degradation. Lithium deposition contributes to low-temperature aging mechanisms, as something needle-like which might be deposited lithium is observed on the surface of the negative electrode after disassembling the aged battery cell. To confirm our explanation, incremental capacity analysis (ICA) is performed to identify the characteristics of the lithium deposition induced battery aging mechanisms. Furthermore, the aging mechanism is quantified using a mechanistic model, whose parameters are estimated with the particle swarm optimization algorithm (PSO). The loss of reversible lithium originating from secondary SEI formation and dead lithium is confirmed as the cause of the aging. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据